首页> 外文OA文献 >Ribosomal oxygenases are structurally conserved from prokaryotes to humans.
【2h】

Ribosomal oxygenases are structurally conserved from prokaryotes to humans.

机译:核糖氧化酶在结构上从原核生物到人类都是保守的。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components and in the hydroxylation of transcription factors and splicing factor proteins. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA and ribosomal proteins have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone N(ε)-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases.
机译:2-Oxoglutarate(2OG)依赖性加氧酶在通过N-甲基化染色质组分的去甲基化调节基因表达以及在转录因子和剪接因子蛋白的羟化中起重要作用。最近,已证明催化转移RNA和核糖体蛋白羟基化的2OG依赖性加氧酶在与细胞生长,TH17细胞分化和翻译准确性有关的翻译中很重要。核糖体加氧酶(ROXs)存在于从原核生物到人类的生物中的发现提出了关于其结构和进化关系的疑问。在大肠杆菌中,YcfD催化核糖体蛋白L16中的精氨酸羟基化。在人类中,MYC诱导的核抗原(MINA53;也称为MINA)和核仁蛋白66(NO66)分别催化核糖体蛋白RPL27A和RPL8中的组氨酸羟基化。 ROX的功能分配通过ROX抑制或靶向差异修饰的核糖体为治疗开辟了可能性。尽管原核和真核ROX的残基和蛋白质选择性不同,但大肠杆菌YcfD和Rhodothermus marinus YcfD的晶体结构与人MINA53和NO66的晶体结构的比较显示出高度保守的折叠和新颖的二聚化模式,定义了2OG的新结构亚家族依赖性加氧酶。具有和不具有其底物的ROX结构支持其功能分配为羟化酶,但不支持脱甲基酶,并揭示了亚家族如何进化以催化核糖体蛋白不同残基侧链的羟基化。 ROX晶体结构与其他含JmjC域的羟化酶(包括缺氧诱导因子天冬酰胺基羟化酶FIH和组蛋白N(ε)-甲基赖氨酸脱甲基酶)的结构比较,可确定2OG依赖性加氧酶进化中的分支点,并区分JmjC-含有羟化酶和脱甲基酶的催化翻译和转录机制的修饰。这些结构表明,通过改变铁结合的底物氧化物质起反应的配位位置,可以进化出新的蛋白质羟基化活性。这种配位灵活性可能促进了加氧酶催化的多种反应的发展。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号